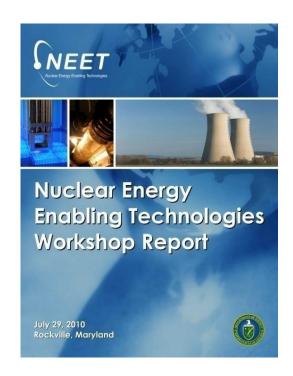
Nuclear Energy

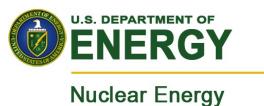
Advanced Methods for Manufacturing

Alison Hahn
Office of Nuclear Energy
U.S. Department of Energy

FY2016 Consolidated Solicitation Webinar

August 12, 2015


AMM Vision and Goals


■ Vision

 To improve the methods by which nuclear equipment, components, and plants are manufactured, fabricated, and assembled by utilizing 'state of the art' methods derived from other high tech industries.

Goal

- To reduce cost and schedule for new nuclear plant construction
- To make fabrication of nuclear power plant (NPP) components faster, less expensive, and more reliable

NEET-1 FOA Technical Focus Areas

- 1. Factory and Field Fabrication Techniques
- 2. Assembly and Material Innovation to Enhance Modular Building Techniques
- 3. Advances in Manufacturing Processes for components

Factory and Field Fabrication Techniques

■ Improvements in Fabrication Technologies

- Continue to improve on welding speed and quality in the fabrication environment
- Seeking new joining technologies for common applications
- Applying new surface modification (coating) techniques to make fabricated structures less susceptible to corrosion
- Improving the thru-put of shop floor and site operations

Assembly and Material Innovation to Enhance Modular Building Techniques

Advances in high strength concrete and rebar

 High strength concrete and rebar, and new types of reinforcement systems to improve quality and reduce construction time

■ Pre-assembled rebar systems

 Field equipment and processes for heading, swaging and splicing rebar to improve quality and speed of reinforced concrete placement

■ Innovations in concrete

- Design of structures that can reduce total volume of concrete poured
- Reduce overall thickness of concrete sections

Advances in Manufacturing Processes for Components

■ Advances in <u>component</u> manufacturing processes

- Reactor internals, fuel cladding and fuel support assemblies
- Vessels, pressure boundary components
- Replacements or improvements for conventional manufacturing processes
- Cladding or surface modification methods
 - Corrosion and wear resistant applications for components

Previously Awarded Projects

■ FY2011

- Laser-Arc Hybrid Welding of Thick Section Ni-base Alloys: Penn State University - Complete
- •Development of Seismic Isolation Systems using Periodic Materials: University of Houston Complete

■ FY2012

- Monitoring and Control of the Hybrid Laser-GMAW Process: Idaho National Laboratory
- •Innovative Manufacturing Process for Nuclear Power Plant Components via Powder Metallurgy and Hot Isostatic Processing Methods: Electric Power Research Institute (EPRI)
- Laser Direct Manufacturing of Nuclear Power Components Using Radiation
 Tolerant Alloys: Lockheed Martin
- Modular Connection Technologies for SC Walls of SMRs: Purdue University

Previously Awarded Projects

■ FY2013

- Ultra-High-Performance Concrete and Advanced Manufacturing Methods for Modular Construction: University of Houston
- Self-Consolidating Concrete Construction for Modular Units: Georgia Institute of Technology
- Improvements in SMR Modular Construction through Supply Chain
- Optimization and Lessons Learned: Georgia Institute of Technology

■ FY2014

- Periodic Material based Seismic Isolators for SMR's: University of Houston
- Improvement of Design Codes to Account for Accident Thermal Effects on Seismic Performance: Purdue University
- Improving Weld Productivity and Quality: Oakridge National Laboratory

Previously Awarded Projects

■ FY2015

- Environmental Cracking and Irradiation Resistant Stainless Steel by Additive Manufacturing: GE Global Research
- Advanced Onsite Fabrication of Continuous Large-Scale Structures: Idaho National Laboratory
- Advanced surface plasma nitriding for development of corrosion resistance and accident tolerant fuel cladding: Texas A&M University
- Prefabricated High-Strength Rebar Systems with High-Performance Concrete for Accelerated Construction of Nuclear Concrete Structures: University of Notre Dame

Summary of Expectations

- The technologies developed will **increase the reliability** of nuclear power plants while **decreasing the cost** of fabrication and construction
- The development of products and components will be able to **gain** acceptance by the appropriate regulatory or standard-setting bodies
- Specific products should be capable of being deployed in commercial nuclear power plants

Contact Information

- Federal Program Manager Alison Hahn
 - Alison.Hahn@Nuclear.Energy.Gov
- Technical Lead Jack Lance
 - <u>JackLanc@Gmail.Com</u>